Теория и практика параллельных вычислений



Параллельные методы умножения матрицы на вектор


Матрицы и матричные операции широко используются при математическом моделировании самых разнообразных процессов, явлений и систем. Матричные вычисления составляют основу многих научных и инженерных расчетов – среди областей приложений могут быть указаны вычислительная математика, физика, экономика и др.

С учетом значимости эффективного выполнения матричных расчетов многие стандартные библиотеки программ содержат процедуры для различных матричных операций. Объем программного обеспечения для обработки матриц постоянно увеличивается – разрабатываются новые экономные структуры хранения для матриц специального типа (треугольных, ленточных, разреженных и т.п.), создаются различные высокоэффективные машинно-зависимые реализации алгоритмов, проводятся теоретические исследования для поиска более быстрых методов матричных вычислений.

Являясь вычислительно трудоемкими, матричные вычисления представляют собой классическую область применения параллельных вычислений. С одной стороны, использование высокопроизводительных многопроцессорных систем позволяет существенно повысить сложность решаемых задач. С другой стороны, в силу своей достаточно простой формулировки матричные операции предоставляют прекрасную возможность для демонстрации многих приемов и методов параллельного программирования.

В данной лекции обсуждаются методы параллельных вычислений для операции матрично-векторного умножения, в следующей лекции (лекция 7) излагается более общий случай – задача перемножения матриц. Важный вид матричных вычислений – решение систем линейных уравнений – представлен в лекции 8. Общий для всех перечисленных задач вопрос разделения обрабатываемых матриц между параллельно работающими процессорами рассматривается в первом подразделе лекции 6.

При изложении следующего материала будем полагать, что рассматриваемые матрицы являются плотными (dense), то есть число нулевых элементов в них незначительно по сравнению с общим количеством элементов матриц.




Содержание    Вперед